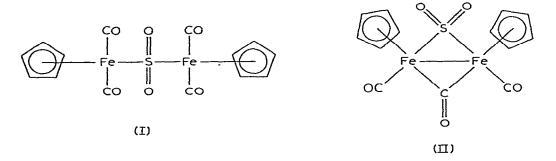
Journal of Organometallic Chemistry, 102 (1975) C46–C48 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

SYNTHESIS OF A TRANSITION METAL-DITHIONITE COMPLEX, $(\eta^{5}-C_{5}H_{5})(CO)_{2}Fe-S(O)_{2}S(O)_{2}-Fe(CO)_{2}(\eta^{5}-C_{5}H_{5})$

NORMAN H. TENNENT, SOPHIA R. SU, CRAIG A. POFFENBERGER and ANDREW WOJCICKI


The McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210 (U.S.A.)

(Received August 14th, 1975)

Summary

The reaction of Na[η^5 -C₅H₅Fe(CO)₂] with large excess of SO₂ in THF at -78°C followed by warming to room temperature affords an iron—dithionite complex, (η^5 -C₅H₅)(CO)₂Fe—S(O)₂S(O)₂—Fe(CO)₂(η^5 -C₅H₅).

It has been previously established [1] that the reaction of SO₂ with $Na[\eta^5-C_5H_5Fe(CO)_2]$ in THF solution yields two isolable crystalline complexes, I and II. In each case a sulfur dioxide molecule bridges two $\eta^5-C_5H_5Fe(CO)_2$ units and the molecular structures of these compounds have been confirmed by X-ray diffraction studies [2,3].

The interaction of SO₂ and $[\eta^5-C_5H_5Fe(CO)_2]_2$ at elevated temperatures is also documented [4], but in that case no simple products of this type were reported. The isolated complexes were formulated as isomers of the polynuclear species $(\eta^5-C_5H_5)_4Fe_4(CO)_4(SO_2)_3$ where the SO₂ molecule again acts in a bridging capacity.

We find that the reaction of SO₂ with Na[η^{5} -C₅H₅Fe(CO)₂] in THF solution is sensitive to the relative concentrations of these reagents, and we

now report that when a large excess of SO₂ is employed^{*} an additional product results. Thus, treatment of a solution of Na[η^5 -C₅H₅Fe(CO)₂] (10 mmol) in THF at - 78°C with an 11-fold molar excess of SO₂ for 5 min followed by slow (1 h) warming to room temperature and chromatography of the reaction mixture on Florisil affords [η^5 -C₅H₅Fe(CO)₂]₂ (1 mmol), I, and a new orange crystalline material III, m.p. 140-146°C (dec.) (0.8 mmol, 16% yield).

$$Nq \left[\eta^{5} - C_{5}H_{5}Fe(CO)_{2} \right] + SO_{2}(excess) \xrightarrow{THF} I + \bigcirc Fe \xrightarrow{CO} S \xrightarrow{CO} I = 0$$

$$Fe \xrightarrow{S} Fe \xrightarrow{S} Fe \xrightarrow{CO} I = 0$$

$$GO = 0$$

$$G$$

We formulate III as a novel type of binuclear transition metal complex in which two iron atoms are bridged by a dithionite linkage. Support for this formulation is provided by elemental analysis and osmometric molecular weight determination^{**}, and spectroscopic data are entirely compatible with the proposed structure. The proton NMR spectrum at 25°C (CDCl₃ soln.) shows a single resonance at τ 4.64 ppm which does not broaden down to – 40°C in (CD₃)₂CO solution, and the ¹³C NMR spectrum at 25°C (CDCl₃ soln.) exhibits signals at 208.381 due to CO and 86.176 ppm from TMS due to C₅H₅, the latter signal remaining sharp down to – 70°C in (CD₃)₂CO solution. The infrared spectrum contains ν (CO) bands (CDCl₃ soln.) at 2070m, 2059m-s, and 2024s(br) and ν (SO) bands (Nujol mull) at 1223s and 1040s cm⁻¹. Both sets of infrared absorptions show a substantial shift to higher energy compared to the corresponding bands of I. This would be consistent with an increase in positive charge on the iron in the η^5 -C₅H₅Fe(CO)₂ moiety on going from I to III, thus resulting in a reduction in Fe-to-S π -bonding.

It appears likely that III arises from subsequent interaction of SO_2 with I generated in reaction I. Our observation that III is in fact formed by treatment of I with SO_2 (eq. 2) not only supports this suggestion but further adds credence to the dithionite structural assignment. The insertion of SO_2

$$I \xrightarrow{SO_2} III$$
(2)
$$h\nu_1 - SO_2$$

into I proceeds either in THF solution under conditions which mirror those of reaction 1 or in neat sulfur dioxide at reflux. The reverse process, SO₂ entrusion from III, has also been achieved, in 26% yield, under photolytic conditions in THF, though the reaction is accompanied by formation of some $[\eta^{5}-C_{5}H_{5}Fe-(CO)_{2}]_{2}$ and extensive decomposition.

^{*}The reaction that afforded I and II utilized a 1.5-fold excess of SO₂, not a 30-fold excess as reported incorrectly in ref. 1.

^{**} Found: C, 35.08; H, 2.10; S, 13.20; mol.wt. (CHCL₃soln.), 501. C₁₄H₁₀S₂O₈Fe₂ calcd.: C, 34.88; H, 2.09; S, 13.30%; mol.wt., 482. No satisfactory mass spectrum was obtained because of decomposition.

Cleavage of III by CH₃I in THF solution at reflux yields η^5 -C₅H₅Fe(CO)₂-S(O)₂CH₃ and η^5 -C₅H₅Fe(CO)₂I in a 1/1.8 ratio (62% total yield). No evidence was obtained for the formation of the species η^5 -C₅H₅Fe(CO)₂S(O)₂CH₃. The same two products were isolated earlier [1] from the reaction between I and CH₃I.

The range of this class of dithionite complexes and their mode of formation are under investigation.

Acknowledgements

We gratefully acknowledge support of this work by the National Science Foundation (MPS 72-04972 AO2), the North Atlantic Treaty Organization (No. 604), and the DuPont Co. through an unrestricted grant to the Department of Chemistry.

References

- 2 M.R. Churchill, B.G. DeBoer and K.L. Kalra, Inorg. Chem., 12 (1973) 1646.
- 3 M.R. Churchill, and K.L. Kalra, Inorg. Chem., 12 (1973) 1650.
- 4 D.S. Field and M.J. Newlands, J. Organometal. Chem., 27 (1971) 221.

¹ M.R. Churchill, B.G. DeBoer, K.L. Kalra, P. Reich-Rohrwig and A. Wojcicki, J. Chem. Soc., Chem. Commun., (1972) 981.